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ABSTRACT 

Let R denote the population multiple correlation coefficient 
of one variable on the other (m-1), in a m-variate normal 

-2 
distribution. Bayes estimator of R , given only the sample 

2 
multiple correlation coefficient R , is derived with respect to 

the squared error loss function and a Beta prior distribution. 
-2 

These results are then related to the Bayes estimates of R /(I- 
-2 
R ) ,  a parameter considered recently by Muirhead (1985). The 

ideas are illustrated and the effect of various parameters 

studied through numerical examples. A Monte Carlo study 
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1402 TIWARI, CHIB, AND JAMMALAMADAKA 

indicates that the sampling mean squared error of the Bayes 
2 

estimator is lower than that of R , for plausible prior 

distributions. 

1. INTRODUCTION 

Let 5 = ( X ,  . . . X )  have the m-variate normal Nm(e,X) 

distribution, where and B are unknown. Let R denote the 

population multiple correlation coefficient between XI and 

X2 - (X2, . . . ,Xm) ' given by 

where X = , Cov(X2) = C22 and a12 is the (m-1)xl 

vector of covariances between X1 and each of the variables in X 
-2' 

Suppose we observe independent and identically distributed 

observations from Nm(e,P). Let the ith data vector be 

5 - X 1  . X i )  i = l N  Define 

- 1 N - 
where X - - - C Xi is the sample mean vector. Partition A as 

i-1 

where A22 is (m-l)x(m-1) The sample multiple correlation 

coefficient between X1 and X is defined as 
-2 
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BAYES ESTIMATION 1403 

The sampling distribution of R~ has been studied extensively (cf. 

e.g. Anderson, 1984, pp. 143-146, and Muirhead, 1982, pp. 171- 

177), and is provided below in equation (2.2). 

Surprisingly, there is only a limited literature on the 
-2 

Bayes estimation of R . Under the assumption of a diffuse prior, 

Geisser (1965) derived the posterior distribution of R ~ .  In the 
regression context with 5, non-random, Press and Zellner (1978), 

-2 
study the posterior distributions of R using diffuse and natural 

conjugate prior distributions. In this paper, we extend the 

original work of Geisser (1965) and show how an informative, Beta 
-2 

prior analysis of R can be conducted. 

The plan of the paper is as follows. In Section 2, the 
-2 

posterior probability density function (pdf) of R , and the Bayes 
-2 

estimator of R under a squared error loss is derived. We also 
-2 

discuss the Bayes estimation of the related parameter B - R /(I- 
F*) that is considered recently by Muirhead (1985). Finally, in 

Section 3, some numerical results are provided including plots of 
-2 

the posterior distribution of R for different parameter values. 

We also carry out a Monte Carlo simulation to compare the 
2 

sampling properties of the Bayes estimator and R . A word about 

the notation. Throughout we take liberty with the commonly used 

notation and employ the same symbol for a random variable and its 
2 

realization. For example, R is used for the random variable as 

well as its sample realization. 

2. BAYES ESTIMATION 

Let R be the sample moment multiple correlation coefficient 

between X1 and X2 based on a sample X. - (X li,...,Xmi), - 1 
i-l,,..,N, of size N=n+l from Nm(k,C). The parameter of 

interest is the population multiple correlation coefficient z. 
The distribution of R~ can be obtained through the following 

approach (see Muirhead, 1985). Let K, V1 and V2 be random 

variables such that 
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1404 TIWARI, CHIB, AND JAMMALAMADAKA 

(i) K has a negative binomial distribution with parameters n/2 

and R2; the probability function of K being 

where B(a,P) - r(a).r(p)/C(a+P), a,P 2 0, 
-2 

(ii) The conditional distribution of V1, given K=k and R is a 
-2 chi-squared with (m-1+2k) degrees of freedom, independent of R . 

(iii) The random variable V is independent of (K,V1), and V 2 2 
has a chi-squared distribution with (n-m+l) degrees of freedom. 

Then, the random variable R~ is distributed as V1/(V +V ) . To 

put it differently, the two experiments (of observinlg) 'R2 and 

V1/(V1+V2) are equivalent. Thus, we may say that there is an 
2 underlying random quantity K such that conditional on K-k, R is 

distributed as Beta (type I) distribution with parameters 
m-1+2k n+ 1-m (2) and (77)' that is with pdf 

-2 independent of R . From (2.2) we observe that the distribution 
2 -2 -2 

of R , given K-k and R , depends on the parameter of interest R , 

only through this underlying random quantity K. This is 

equivalent to saying that K would be a sufficient statistic for 
-2 2 
R if the data were (K,R ) . Since K has the distribution given 

in (2.1, it follows that the family of Beta (type I) 
-2 distributions is a conjugate family of priors for R . 

-2 
Thus, to proceed with the Bayesian analysis of R , we can 

-2 employ a Beta (type I) prior distribution for R with pdf 

or more generally, 
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BAYES ESTIMATION 1405 

where a and ,9 are hyperparameters that are assumed known. Value 

of a and j3 can be selected to represent different prior beliefs 

about z2. 
2 

Now from (2.2), the likelihood function of z2, given R , is 

obtained by averaging over the distribution of K, which yields 

where, for positive integers p, q, and real z, 

is the generalized hypergeometric function. In (2.5), if p=q+l, 

the series converges for 1z1<1 and diverges for 1z1>1. Hence, 

from (2.3), (2.4) and the usual Bayes formula, the posterior pdf 
2 

of E ~ ,  given R , is 

(2.6) 

2 
From ( 2 . 6 )  it is clear that the posterior pdf of R ~ ,  given R , is 

a weighted sum of Beta (type I) densities. The Bayes estimator 
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1406 TIWARI, CHIB, AND JAMMALAMADAKA 

-2 
of R with respect to the squared error loss function is 

-2 2 
and the variance of R , given R , is 

n n m-1 11 2 n n  m-ln 
3F2(2p2,a + 2;- 

2 
,2 + a + LJ + 2;R )/3F2(5,5,a;-3-,2 + a +P;R ) 

It should be noted that (2.7) and (2.8) require the 

computation of (three) 3F2 functions. In our simulation 

exercises, some of which are reported in Section 3, we have found 

that the expression in (2.5) converges fairly quickly and often 

no more than 150 terms need to be included in the sum. 

Remark 1. The results developed thus far can be readily 

adapted to provide the Bayes estimator of the parameter 

e - E'/(~-R~). Muirhead (1985) considers the classical 

estimation of 0 and showed that the best estimators of 0 ,  

including the unique minimum variance unbiased estimator, are 
2 2 linear functions of Y-R /(l-R ) .  The sampling distribution of Y 

has been considered by Gurland (1968) and Muirhead (1982). The 

sampling distribution can also be derived by using the fact that 

Y has the same distribution as 
V1/V2 and that there is a one- 

-2 to-one correspondence between R and 9 .  Now, noticing that a 

Beta type I prior (2.3) on g2 corresponds to a Beta type I1 prior 
for 8 with pdf 
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BAYES ESTIMATION 140 7 

the posterior pdf of 8 (by a change of variable in equation (2.6) 

or directly) is 

From (2. lo), the Bayes estimator of B , given Y, with respect to 

the squared error loss function, is 

and the variance of 8, given Y, is 

h 

where B is given by (2.11). 
n 

Remark 2: The assessment of the hyperparameters a and P .  
-2 

Since the parameters a and p of a Beta (type I) prior for R are 
2 

unknown, one estimates a and B using the past data on R , say, by 

the method of moments or as suggested by a referee, by the method 

of maximum likelihood. Since the latter method involves a 

difficult maximization, we restrict attention to the method of 

moments approach. Since the expressions for the first two 
-2 

moments of lI2 given R , are complicated, we shall instead 

estimate a and B from the first two moments of Y, given 8 .  These 
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n m- 1 
E(Yl0) = - @ + -  

n-m- 1 n-m-1 

and 

Hence, the first two moments of the unconditional distribution of 

Y are 

and 

(2.14) 

From (2.13) and (2.14) 

and from (2.15) and (2.15) 

where 

and 
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BAYES ESTIMATION 1409 

2 
Let R , .  . . R be the values of R~ based on the past t 

independent samples, each of size N - n + 1, on x. Let 
2 2 

Y = ( 1 - R ) ,  i-1, . . . ,  t, and 

1 
t 

and 
1 2 

m2 = 2 Yi (2.18) - 7  *i * i=l 

be the first and second sample moments of Y. Then, using ml and 

m as estimators of p1 and p2, the estimates of a and from 
2 
(2.15) and (2.16) are 

and 

A 

where from (2.17) and (2.18) L = m  1 (n-m-1)-(m-1). Thus, when a 

and P are unknown, the empirical Bayes estimator of g2 at the 
2 2 

(t+l)th stage, based on R1,...,Rt, is given by 

where Rttl denotes the sample correlation coefficient based on a 

sample of size N on X at (t+l)a stage. The procedures described 

earlier can, be used to find the variance of the empirical Bayes 
-2 -2 

estimator R and the confidence intervals for R , given 
2 2 n, t+l' 

Rl,. . .  J Rt+l. We A may remark here that merely plugging the 
- 

estimates 8 and in (2.21) gives a naive empirical Bayes 
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1410 TIWARI, CHIB, AND JAMMALAMADAKA 

estimator, which quite frequently under estimates the 

corresponding variance. 

3. NUMERICAL EVALUATION 

As with all Bayes procedures, it is important to examine the 

sensitivity of the posterior distribution and the Bayes 

estimator, to the choice of prior parameters, (a,/?), and the 

sample size, N. We picked two sets of values (a,/?) namely (2,6) 

and (6,2) . For the choice of R~ - 0.6, m = 3 and n = 10, 20, 

30, 40, 50, we provide in Tables 3.1 and 3.2 some summary 

characteristics of the posterior pdf of g2. 

-2 2 
TABLE 3.1: SUMMARY CHARACTERISTICS OF z(R (R ) 

2 R -0.6 m-3 a=2 6-6 
n 

Posterior 10 20 3 0 40 5 0 

mean 0.3082 0.3897 0.4405 0.4730 0.4950 
mode 0.2800 0.3900 0.4500 0.4900 0.5100 

variance 0.0201 0.0167 0.0130 0.0103 0.0084 

TABLE 3.2: SUMMARY CHARACTERISTICS OF [ R ~ )  

n 
Posterior 10 2 0 3 0 40 5 0 
measure 
me an 0.6450 0.6278 0.6198 0.6153 0.6125 
mode 0.6800 0.6500 0.6400 0.6300 0.6300 

variance 0.0147 0.0107 0.0084 0.0069 0.0059 

Note: The mean and variance are computed using expressions (2.7) 
and (2.8). For the given parameter values, it was found 
necessary to include only 140 terms in the evaluation of the 
function appearing in (2.6). To avoid an overflow, the typi?:f 
term of (2.6) was first logged and then exponentiated. The mode 
was comput d through a global grid search of the posterior pdf -9 
(2.6) as R varies from .O1 to .99 in increments of .01. A finer 
grid was not thought necessary for the point being made. 
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BAYES ESTIMATION 

Prior-Posterior: n=20,30.40. 

Rborsq 

-2 Figur 3.1. Examples of posterior densities of R for 
m==3,R5=.6,0-2,,3=6 with n=20,30,40. Legend: n-20.----- 
. n-30,.-.-*-. , n-40 ,- 

These tables illustrate in a concise way the effect of the 
-2 

prior information and sample size on the posterior of R . When 
-2 

a-2 and P-6, the posterior mean of R increases towards the 

sample value 0.6 with n, whereas when a-6 and ,B-2, the 
-2 

posterior mean of R decreases towards 0.6 with n. As the sample 

size n increases, the mode of the posterior gets closer to the 

mean indicating a tendency towards symmetry. Also, as n 

increases, the curves become more peaked and concentrated towards 

the center as corroborated by the fact that the variance of the 

posterior distribution approaches zero as n tends to infinity. 

These facts are also revealed by the plots of the prior and 

posterior pdfs in Figure 3.1. 

We also report some simulation results related to the 
-2 

sampling distribution of R' and Rn. The true data was generated 

from the trivariate normal distribution with mean zero and 

variance 
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1412 TIWARI, CHIB, AND JAMMALAMADAKA 

TABLE 3.3. A SAMPLING COMPARISON: N=20, M=3, 100 REPLICATIONS 

Note: The sampling bias and variance are computed using 100 
replications for each pair of a,P values. The sampling MSE is 
the bias squared plus the variance. 

Bias 0.0309 
Variance 0.0274 
MS E 0.0284 

-2 
Thus the population multiple correlation, R , is .36. 100 

replications of size N-20 are drawn from this distribution. 

The sampling bias, variance, and sampling mean square error (MSE) 

of the two estimators of g2 is reported below in Table 3.3. 
The table above shows that with prior information represented by 

a = 2 and = 6, the Bayes estimate is downward biased. This 

is quite reasonable given that the prior mean of 0.25 is below 

the true g2 value of 0.36. Further, the Bayes estimate, which is 
more biased than the classical estimate, possesses a lower 

2 sampling mean square error than R . Similar observations can be 

made about the other cases shown above. Interestingly, when the 
-2 prior information is implausible relative to the true value of R 

(i .e. , when a - 6, p - 2 ) ,  the Bayes estimate is considerably 
2 biased. This increases the MSE of E: above that of R . We can 

conclude that as long as R~ is near E(E~), the prior 
-2 expectation, the Bayes estimate R will possess a lower MSE than 

2 n 
the estimator R . 

-0.0774 0.0462 0.0858 0.1739 
0.0064 0 .0083 0.0071 0.0057 
0.0124 0.0105 0.0145 0.0360 
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